Your submission was sent successfully! Close

Jump to main content

Accelerate AI/ML workloads with Kubeflow and System Architecture

AI/ML model training is becoming more time consuming due to the increase in data needed to achieve higher accuracy levels. This is compounded by growing business expectations to frequently re-train and tune models as new data is available.

The two combined is resulting in heavier compute demands for AI/ML applications. This trend is set to continue and is leading data center companies to prepare for greater compute and memory-intensive loads for AI.

Getting the right hardware and configuration can overcome these challenges.

In this webinar, you will learn:

  • Kubeflow and AI workload automation
  • System architecture optimized for AI/ML
  • Choices to balance system architecture, budget, IT staff time and staff training.
  • Software tools to support the chosen system architecture

Watch the webinar

Newsletter signup

Select topics you're
interested in

In submitting this form, I confirm that I have read and agree to Canonical's Privacy Notice and Privacy Policy.

Related posts

AI/ML in retail: how the shopping experience has changed

From brick-and-mortar stores to online marketplaces, retail companies are all increasing their investments in artificial intelligence, in order to gain a...

Kubeflow just applied to join CNCF – what does it mean for you?

Google just announced that they have submitted an application for Kubeflow to become an incubating project in the Cloud Native Computing Foundation (CNCF). It...

Hyperparameter tuning for ML models

To create a machine learning model, you need to design and optimise the model’s architecture. This involves performing hyperparameter tuning, to enable...