Thank you for signing up for our newsletter!
In these regular emails you will find the latest updates from Canonical and upcoming events where you can meet our team.Close
Thank you for contacting us. A member of our team will be in touch shortly. Close
ChatGPT has been the talk of the town for more than four months now. As the first ever artificial intelligence (AI) -powered chatbot, it has quickly gained immense popularity, helping students, engineers and even executives generate content, write and debug code and run market analyses. But could ChatGPT be used for anything other than na ...
Date: 17-21 April 2023 Location: Amsterdam Booth: P15 In just a few weeks, Kubecon will be held at RAI Convention Center, in Amsterdam, the Netherlands. After a bunch of news from the industry around AI projects, such as GPT4 or MidJourney4, Canonical is also ready to bring open source into the landscape. Among the attendees, ...
Run serverless ML workloads. Optimise models for deep learning. Expand your data science tooling. Canonical, the publisher of Ubuntu, announced today the general availability of Charmed Kubeflow 1.7. Charmed Kubeflow is an open-source, end-to-end MLOps platform that can run on any cloud, including hybrid cloud or multi-cloud scenarios. T ...
Canonical is happy to announce that Charmed Kubeflow 1.7 is now available in Beta. Kubeflow is a foundational part of the MLOps ecosystem that has been evolving over the years. With Charmed Kubeflow 1.7, users benefit from the ability to run serverless workloads and perform model inference regardless of the machine learning framework they ...
After ChatGPT took off, the AI/ML market suddenly became attractive to everyone. But is it that easy to kickstart a project? More importantly, what do you need to scale an AI initiative? MLOps or machine learning operations is the answer when it comes to automating machine learning workflows. Adopting MLOps is like adopting DevOps, you ...
MLOps (short for machine learning operations) is slowly evolving into an independent approach to the machine learning lifecycle that includes all steps – from data gathering to governance and monitoring. It will become a standard as artificial intelligence is moving towards becoming part of everyday business, rather than an innovative act ...
While AI seems to be the topic of the moment, especially in the tech industry, the need to make it happen in a reliable way is becoming more obvious. MLOps, as a practice, finds itself in a place where it needs to keep growing and remain relevant in view of the latest trends. Solutions like ...
Looking at the report that Gartner did in 2022 regarding top technology trends, AI engineering represents an important pillar in the near future. It is composed of three core technologies: DataOps, MLOps and DevOps.The discipline’s main purpose is to develop AI models that can quickly and continuously provide business value. For instance, ...
Kubeflow summit aims to bring together users, contributors and professionals who benefit from the open-source MLOps platform. After two unusual years, in 2022 the community decided to take a step further and organise two days that will be all about…Kubeflow So…where and when do we meet? Either virtually or in person, at AMA Conference Cen ...
To create a machine learning model, you need to design and optimise the model’s architecture. This involves performing hyperparameter tuning, to enable developers to maximise the performance of their work. How do hyperparameters differ from model parameters? Michal Hucko, Kubeflow engineer, and Andreea Munteanu, Product Manager will host ...
Kubeflow is an open-source MLOps platform that runs on top of Kubernetes. Kubeflow 1.6 was released September 7 2022 with Canonical’s official distribution, Charmed Kubeflow, following shortly after. It came with support for Kubernetes 1.22. However, the MLOps landscape evolves quickly and so does Charmed Kubeflow. As of today, Canonical ...
We are happy to announce that Charmed Kubeflow 1.6 is now available in Beta. Kubeflow has evolved into an end-to-end MLOps platform for optimised complex model training. We’re looking for data scientists, ML engineers and developers to take the Beta release for a drive and share their feedback! Read on to learn more. Read more ...