Your submission was sent successfully! Close

  1. Blog
  2. Article

on 8 November 2022

The integration allows users to leverage deep learning for AI/ML projects within the MLOps platform

On 8 November 2022, at Open Source Experience Paris, Canonical announced that Charmed Kubeflow, Canonical’s enterprise-ready Kubeflow distribution, now integrates with MindSpore, a deep learning framework open-sourced by Huawei. 

Charmed Kubeflow is an end-to-end MLOps platform with optimised complex model training capabilities designed for use with Kubernetes. Part of a robust set of integrations, the new, native integration with MindSpore provides access to unified APIs and end-to-end AI capabilities for model development, execution and deployment. MindSpore offers AI-native execution modes, fully using the computing power provided by Huawei’s hardware.  

MindSpore: an innovative AI framework with wide industry adoption

Industry partners and developers have actively participated in MindSpore’s development since it first became open source in 2020. MindSpore serves over 5,000 businesses and has been downloaded over 2.49 million times. More than 6,600 developers have contributed code to the program, and more than 110 universities and 40 top research institutes have used MindSpore for scientific research and teaching. 

MindSpore is optimised for Huawei hardware, such as Ascend/GPU/CPU, and can be quickly deployed in cloud, edge and mobile scenarios, allowing engineers to develop solutions for a wide spectrum of use cases. MindSpore runs on the Jupyter Notebook, a web-based interactive computing platform. When creating the Notebook, engineers can choose the MindSpore image from the default Jupyter Lab image list, assign certain CPU resources and spin up a notebook instance that can run MindSpore and its Vision suite code to do machine learning experiments. 

Get started using our practical guide.

Robust integrations for MLOPs at scale 

By providing a native integration with MindSpore and collaborating with Huawei on this open-source project, Canonical is providing the MLOPs ecosystem with an increasingly rich toolset. Charmed Kubeflow integrates with multiple AI/ML tools, such as MLFlow, which provides a central model registry, and Spark, which facilitates data streaming.  The MindSpore integration provides access to the solution’s various features,  such as unified programming and operators, automatic model partitioning and dynamic and static computation graphs. R

Learn more at the Open Source Experience conference in Paris

Canonical and Huawei will be present at Open Source Experience in Paris on 8-9 November 2022. Schedule a meeting to learn more about Mindspore and Charmed Kubeflow. Event attendees can demo a real use case that benefits from the integration running on top of Atlas 500 Pro AI Edge Servers.

Read more about Kubeflow at Open Source Experience and meet us at booth E32

About Canonical

Canonical is the publisher of Ubuntu, the leading operating system for container, cloud and hyperscale computing. Ubuntu is the OS for most public cloud workloads as well as the emerging categories of smart gateways, self-driving cars and advanced robots. Canonical provides enterprise security, support, and services to commercial users of Ubuntu. Established in 2004, Canonical is a privately held company.For more information on Canonical and Ubuntu, visit  and

Related posts

Andreea Munteanu
24 November 2023

Building a comprehensive toolkit for machine learning

AI Article

In the last couple of years, the AI landscape has evolved from a researched-focused practice to a discipline delivering production-grade projects that are transforming operations across industries. Enterprises are growing their AI budgets, and are open to investing both in infrastructure and talent to accelerate their initiatives – so it’ ...

Andreea Munteanu
22 November 2023

Canonical releases Charmed Kubeflow 1.8

AI Article

Canonical, the publisher of Ubuntu, announced today the general availability of Charmed Kubeflow 1.8. Charmed Kubeflow is an open source, end-to-end MLOps platform that enables professionals to easily develop and deploy AI/ML models. It runs on any cloud, including hybrid cloud or multi-cloud scenarios. This latest release also offers the ...

Andreea Munteanu
5 October 2023

Learn about all things Kubeflow at Kubeflow Summit 2023

AI Article

The Kubeflow community is meeting again this year to celebrate their success, learn from their users and discuss some of the challenges of the open source world in the MLOps context. Kubeflow Summit 2023 will take place on October 6 2023, in a hybrid format.  Attendees can join in person at Irving Convention Center or ...